Stereochemical Studies on an a-Chlorocyclopropyl Radical System

Lawrence A. Singer and Janet Chen

Department of Chemistry, University of Southern California, Los Angeles, California 90007, USA

(Received in USA 1 February 1971; received in UK for publication 16 March 1971)

Results to date indicate that α -chloro- and α -bromovinyl radicals are bent and that scavenging by hydrogen atom transfer from hydrocarbon solvents is competitive with inversion $(1 \neq 2)$. (1) Similarly hybridized α -alkylvinyl radicals invert faster than they are intercepted by hydrocarbon scavengers (2,3) although more efficient scavenging systems do lead to partial specificity in the products. (4) In contrast, α -arylvinyl radicals appear to be linear (3, sp-hybridized) (5,6).

We now have extended our studies to cyclopropyl radicals with the idea that α -halocyclopropyl radicals might exhibit the same tendency towards stereospecific capture by hydrocarbon solvents as do the α -halovinyl radicals. The system we chose for our study is the 6-chlorobiclo[3.1.0]hex-6-yl radical system ($5 \rightleftharpoons 6$) which can be generated by thermolysis and photolysis of the <u>t</u>-butyl peroxyester precursors (4,7).

Peroxyesters 4 and 7 were prepared as follows. The readily available epimeric carboxaldehydes (10 and 11) (7) were oxidized with silver oxide to the corresponding carboxylic acids (12, m.p. 115-119°; 13, m.p. 98-103°). The latter yield the <u>t</u>-butyl peroxyesters by reaction with N,N-carbonyldiimidazole and sodium <u>t</u>-butyl hydroperoxide. (8) (7, liquid, <u>calcd</u>. for $C_{11}H_{17}O_3C1$: C, 56.60, H, 7.36. Found: C, 56.89, H, 7.38. <u>4</u>, m.p. 34-6°. Found: C, 56.64, H, 7.47.) R Cl Cl R

The chlorocarbon products $(\underline{8},\underline{9})$ were prepared by addition of chlorocarbone to cyclopentene and were isolated by preparative vpc. The <u>exo</u> and <u>endo</u> isomers were identified by comparison of their nmr spectra with published data. (9) The original structural assignments are based in part on the greater thermal lability of the <u>endo</u> isomer in accord with the Woodward-Hoffman orbital symmetry arguments. (10)

Table 1 lists the products from the photochemical decomposition of peroxyesters 4 and 7. The thermal decomposition of the peroxyesters (106°, $k \approx 10^{-5}$ sec) does not provide reliable chlorocarbon product data because of the thermal lability of the <u>endo</u>-isomer (9). However, control experiments showed that both the <u>endo</u> and <u>exo</u> chlorocarbons are stable under the photochemical conditions given in Table 1. (11)

Peroxyester	Scavenging System Toluene	Temp.(°C) 42	Products Chlorocarbons ^b Acid ^C Mole %		endo/exo 0.54 ± 0.01
7			70 ± 5.0		
4	Toluene	42	64 ± 4.7		0.56 ± 0.01
7	Toluene	26	43 ± 3.0	14.6 ± 1.0	0.50 ± 0.01
4	Toluene	26	42 + 2.0	10.7 ± 0.3	0.48 ± 0.01
7	Toluene	4	20 ± 1.0	17.0 ± 1.0	0.39 ± 0.02
4	Toluene	4	44 ± 3.0	15.2 ± 0.2	0.39 ± 0.02
7	Diisopropy1benzene	52	75 ± 4.0	15.2 ^d	2.03 ± 0.04
4	Diisopropy1benzene	52	73 ± 2.0	8.3 ± 0.2	2.08 ± 0.03
7	Diisopropy1benzene	26	60 ± 1.0	14.9 ± 2.0	1.70 ± 0.01
4	Diisopropy1benzene	26	43 ± 1.0	6.8 ± 0.1	1.75 ± 0.02
7	Diisopropy1benzene	4	61 ± 1.0	18.3 ± 0.1	1.47 ± 0.03
4	Diisopropylbenzene	4	57 ± 2.0	9.6 ^d	1.43 ± 0.05

Table 1. Products from the Photodecomposition of Peroxyesters 4 and 7.^a

^aDegassed and sealed Quartz ampoules were irradiated with a 450-w Hanovia arc using a Corex

No.14

filter. Samples were 0.1 M in peroxyester.

^bVpc analysis on a 20% SE-52 on Chromsorb P column at 65° and a flow rate of 110 cc/sec. Yields determined by comparison with standard solutions of the chlorocarbons. ^CDetermined by infrared analysis using standard solutions of the acids. ^dSingle determination. All other runs represent two or more determinations.

The significant acid yields suggest that a one-bond homolysis mechanism operates with these peroxyesters (8). However, considerable decarboxylation occurs $(\frac{14}{5} + \frac{5}{5})$ as indicated by the generally moderate to large chlorocarbon yields.

Essentially identical <u>endo/exo</u> ratios are observed from either starting source. Further, with diisopropylbenzene (DIP) as scavenger, the isomer ratio is unchanged by dilution with benzene down to 1.5 M DIP at 26°. We conclude that the chlorocarbon products are stereoselectively determined, i.e., that equilibration $(5, \div 6)$ preceeds the hydrogen atom transfer steps. Accordingly,

 $\log (\underline{\text{endo}/\text{exo}}) = (\Delta \Delta H_{\underline{\text{exo}-\text{endo}}}^{\dagger} + \Delta H_{\underline{\text{exo}-\text{endo}}})/(2.3 \text{ RT}) - (\Delta \Delta S_{\underline{\text{exo}-\text{endo}}}^{\dagger} + \Delta S_{\underline{\text{exo}-\text{endo}}})/(2.3 \text{ RT})$ Plots of the data from Table 1 as Log (<u>endo/exo</u>) vs T⁻¹ lead to values of ($\Delta \Delta H_{\underline{\text{exo}-\text{endo}}}^{\dagger}$ + $\Delta H_{\underline{\text{exo}-\text{endo}}}$) for DIP and toluene of -1.22 and -1.78 kcal/mole, respectively (12).

If the $\underline{exo} - \alpha$ -chlorocyclopropyl radical is more stable than the \underline{endo} , $\Delta H_{\underline{exo}-\underline{endo}}$ is negative while $\Delta \Delta H_{\underline{exo}-\underline{endo}}^{\dagger}$ is expected to be positive (13). The overall negative slopes result from a domination by the enthalpy of formation term. Assuming that $\Delta H_{\underline{exo}-\underline{endo}}$ is the same in both hydrocarbon solvents, we conclude from a comparison of the two slope values that DIP is more selective than toluene by -0.3 kcal/mole. This value is slightly smaller than the relative stereoselectivity values for cumene and toluene obtained in previously studied vinyl radical systems (5).

The alternative scheme of a single, planar α -chlorocyclopropyl radical that partitions to both products also could lead to the observed product distribution if $\Delta\Delta H_{exo-endo}^{\pm} < 0$. Such a situation could arise if the steric strain resulting from the chlorine-propano bridge interac-

tion (transition state involving exo approach) were greater than the steric strain resulting from the interaction between the incoming scavenger and the propano bridge (transition state involving endo approach). Admittedly, a kinetic argument cannot conclusively choose between the two schemes. However, by either scheme, the difference between the slope values is a measure of the relative stereoselectivity of toluene and DIP in this system so that $(\Delta\Delta\Delta H^{\pm}_{exo-endo})_{tolu-}$ ene-DIP = 0.3 kcal/mole.

We prefer the first scheme of interconverting epimeric radicals on the basis of the reported stereospecific reduction of epimeric gem-halofluorocyclopropanes with tri-n-butyl tin hydride (14). In this reaction, pyramidal α -fluorocyclopropyl radicals are scavenged by hydrogen atom transfer from the much more efficient hydride scavenger before inversion.

ACKNOWLEDGMENT. We thank the National Science Foundation for a grant (No. GP 11391) in support of this research and Randall Murphy for carrying out preliminary experiments on this project.

REFERENCES.

- 1) L.A. Singer and N.P. Kong, Tetrahedron Letters, 643 (1967); J. Am. Chem. Soc., 89, 5251 (1967).
- 2) L.A. Singer and N.P. Kong, Tetrahedron Letters, 2089 (1966); J. Am. Chem. Soc., 88, 5213 (1966).
- J.A. Kampmeier and R.M. Fantazier, J. Am. Chem. Soc., 88, 1959 (1966). 3)
- 4) ^aG.D. Sargent and M.W. Browne, <u>J. Am. Chem. Soc</u>., <u>89</u>, <u>788</u> (1967); ^bA.J. Fry and M.A. Mitnick, <u>ibid.</u>, <u>91</u>, 6207 (1969); ^CH.G. Kuivila, Accts. Chem. Res., 1, 299 (1968).
- 5) L.A. Singer and J. Chen, Tetrahedron Letters, 4849 (1969).
- 6) R.M. Kopchik and J.A. Kampmeier, <u>J. Am. Chem. Soc.</u>, <u>90</u>, 6733 (1968).
- 7) P.R. Brook, Chem. Comm., 565 (1968).
- 8) L.A. Singer, "Peroxyesters", in Organic Peroxides. Vol. I, D. Swern, ed., J. Wiley and Sons, Inc., New York, 1970, p. 265.
- 9) M.S. Baird and C.B. Reese, Tetrahedron Letters, 1379 (1967).
- 10) R.B. Woodward and R. Hoffmann, J. Am. Chem. Soc., 87, 395 (1965).
- 11) Toluene and diisopropylbenzene solutions of exo-endo mixtures of the chlorocarbons in degassed and sealed Quartz ampoules were irradiated for 9 hours at 26° using a 450-w Hano-via arc through a Corex filter (cutoff -2800A). The <u>endo/exo</u> ratio and the total chlorocarbon content did not change under these conditions. Variable results were observed using a Vycor filter (cutoff ~2500A). Apparently, the longer wavelength filter retards excitation to a state that appears as a shoulder in the 2500-2700 A region ($\varepsilon \approx 10$, cyclohexane) which then directly or indirectly leads to decomposition.
- 12) The subscripts exo and endo refer to the stereochemistry of the chlorine substituent.
- 13) We would expect that in the transition state involving endo approach by the scavenger to radical 5 greater steric strain would result than in the transition state involving exo approach to radical 6 so that $\Delta \Delta H^{\pm} > 0$.
- 14) T. Ando, F. Namigata, H. Yamanaka, and W. Funasaka, J. Am. Chem. Soc., 89, 5719 (1967).